LEARNING PATHS FROM REAL NAVIGATION: THE ADVANTAGE OF INITIAL VIEW, CARDINAL NORTH AND VISUOSPATIAL ABILITY

Chiara Meneghetti & Veronica Muffato

Muffato, V., & Meneghetti, C. (2020). Learning a Path from Real Navigation: The Advantage of Initial View, Cardinal North and Visuo-Spatial Ability. Brain sciences, 10(4), 204. https://doi.org/10.3390/brainsci10040204

BACKGROUND

- Navigation is a common complex activity
- Learner's initial view prompt the spatial representation's orientation (Wilson et al., 2007; Tlauka et al., 2011)
- The representation can be integrated with allocentric information (e.g., Meilinger et al., 2015).
- Cardinal points can be taken for reference (worldbased information) in environment representation
- Cardinal points seem to influence a representation's proprieties of familiar environments (Tlauka et al., 2011), less evidence for newly acquired environments.
- Individual visuospatial factors are relevant to environment representations (Hegarty et al., 2006)

METHOD

PARTICIPANTS

91 young old participants (76 females, M age = 21.89, SD = 2.25), unfamiliar to the park

1) LEARNING PHASE (no map available)

participan

ts walking

cardinal

north to

south (NS

learning)

from

Università degli Studi di Padova

Department of General Psychology

veronica.muffato@unipd.it

AIMS

(i) The spatial representation formed after navigation follow a particular orientation due mainly to the initial egocentric view? or to a combination of this initial egocentric view with allocentric (world-based) information?

(ii) Is there a role of visuospatial abilities (perspective taking), and self-reported sense of direction in supporting environment representations?

RESULTS and DISCUSSION

Means and standard deviations by learning condition and correlations between measures of interest

	SN-Learning		NS-Learning		1	2	3
	M	SD	M	SD	- 1	-	U
1. sOPT (max. 180° ^a)	45.42	26.36	41.39	19.73	-		
2. SDSR (max. 65)	44.33	7.96	46.40	7.77	-0.183	-	
3. SN pointing (max. 180° ^a)	22.74	15.07	37.21	30.65	0.313 **	-0.038	-
4. NS pointing (max. 180° ^a)	41.27	34.68	33.93	20.17	0.368 ***	-0.107	0.130

sOPT: Short Object Perspective Taking; SDSR: Sense of Direction and Spatial Representation. ^a Degrees of error. ** $p \le 0.01$; *** $p \le 0.01$.

Stepwise linear regression models

AIC	β	p
1723		
	0.03	0.646
	-0.00	0.988
1717		
	0.27	0.009
	0.34	0.001
	-0.35	0.006
1695		
	0.37	< 0.001
	-0.01	0.889
	1723 1717	1723 0.03 -0.00 1717 0.27 0.34 -0.35 1695 0.37

46 participan ts walking from cardinal south to north (SN learning)

South

2) RECALL PHASE

SN and NS pointing task

3) VISUOSPATIAL MEASURES

-Object perspective taking task (De Beni et al., 2014; Hegarty & Waller, 2004) -Sense of direction scale (do you think you have good sense of direction?) Pazzaglia & Meneghetti 2017

REFERENCES

- Hegarty, M.; Richardson, A.E.; Montello, D.R.; Lovelace, K.; Subbiah, I. Development of a self-report measure of environmental spatial ability. Intelligence 2002, 30, 425–447.
- Meilinger, T.; Frankenstein, J.;Watanabe, K.; Bültho, H.H.; Hölscher, C. Reference frames in learning from maps and navigation. Psychol. Res. 2015, 79, 1000–1008.
- Pazzaglia, F.; Meneghetti, C. Acquiring spatial knowledge from dierent sources and perspectives: Abilities, strategies and representations. In Mind andWorld. Essays Inspired by Barbara Tversky; Zacks, J.M., Taylor, H.A., Eds.; Routledge: Abingdon, UK, 2017; pp. 120–134.
- Tlauka, M.; Carter, P.; Mahlberg, T.; Wilson, P.N. The first-perspective alignment e
- ect: The role of environmental complexity and familiarity with surroundings. Q. J. Exp. Psychol. 2011, 64, 2236–2250. Wilson, P.N.;Wilson, D.A.; Griffiths, L.; Fox, S. First-perspective spatial alignment effects from real-world exploration. Mem. Cogn 2007, 35, 1432–1444.

SN-learning: performance was better (fewer degrees of error) for SN pointing than for NS pointing; NS-learning: performance in SN and NS pointing was similar

CONCLUSION

(i) Mental representations incorporate both initial view and allocentric information (cardinal directions)(ii) this representation is supported by individual perspective-taking ability